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Global Energy Consumption and Power Electronics
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• Motor Drives

• Radar / Microwave Communications

• dc to dc Converters

• Power Supplies

• Electric Vehicle Drives

• Weapons Systems

Power Electronic Systems

Today’s Topic
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Converts AC power (fixed frequency, voltage) to
AC Power (variable frequency, current, and voltage)

Enables exact control of speed (RPM) and torque of motors
Motors become  controlled electromechanical energy converters.

Rockwell Automation - Allen Bradley 1336 Force Drive

Rockwell Automation
Reliance Electric AC Motor

Drive & Motor Automation System

Performance Metrics:
   • Power Density
   • Cost
   • Reliability
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Basic Power Packaging Elements

Silicon

Ceramic Insulation

Wirebonded Interconnections

Soldered Interconnections

Gel 
Encapsulation

Plastic
 Housing

Power Terminals

Metal 
Baseplate

Heatsink
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Generic Electronic Packaging Technology Hurdles

Controlled Power Density ( W / m3 )
High Power Requirements from Devices
High Packaging Densities
Weight Requirements

Cost ( $ / Function )

Reliability ( MTBF )



High-Temperature Packaging of

SiC Electronics

M.C. Shaw, J.R. Waldrop, F. Zok,1
Rockwell Science Center, Thousand Oaks, CA
1University of California, Santa Barbara CA

30 May, 2001
CMC

Contract Number MDA97298C0002
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Decrease in System Volume Through Utilization Of
Silicon Carbide (SiC) Electronics

Silicon Power
Density = 106 W/m2

Baseplate Power 
Density ~ 105 W/m2 

Heatsink Power 
Density ~ 103  W/m2 

T fin = 55C

Silicon
Tj ~125-150 C

SiC Power
Density = 106 W/m2 

Baseplate Power 
Density ~ 105 W/m2

Heatsink Power 
Density ~ 104  W/m2 

T fin >200C

Silicon Carbide
Tj ~300 - 350 C

Smaller, 
hotter 

heatsink 
feasible
with SiC

(Q=hA∆T)



Thermomechatronics

M.C. Shaw and E.R. Brown,1
Rockwell Science Center, Thousand Oaks, CA

1University of California, Los Angeles CA

30 May, 2001

Contract Number MDA97298C0002
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Thermal Management of Power Electronics:
Spread Power Density from Device to Heatsink

Silicon Power
Density = 106 W/m2 

Baseplate Power 
Density ~ 105 W/m2 

Heatsink Power 
Density ~ 103  W/m2 

5 hp Motor Drive Example
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Large Area Solder Joint Reliability in Power Assemblies

CuIGBT

Internal view of a 1200A, 3300V IGBT module
(courtesy: Eupec GmbH+ Co.)

1 cm

Examples of Buried 
Continuous Solder Layers
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Elastic Fracture Mechanics Energy Balance
in Layered Systems

Driving Force for Crack Growth   or
Material or Interfacial 

Crack Growth Resistance

GIc( )
E
1hZ 22 υ−σ >

<

Cracking depends on which is larger:

σ = Stress in coating
h = Coating thickness
E, v = Elastic properties
Z ~ 0.3

σ Film/Coating

Substrate, GIc

h
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Thermal Cycling of 
Sn - Pb (Elastic/Plastic) vs Au-Sn (Elastic) Joints

80Au20Sn
on 

Copper

63Sn37Pb
on

Copper

As Soldered         1 cycle            10 cycles           100 cycles        1000 cycles

∆α ∆α ∆α ∆α = 14.1 ppm,
Elastic / Plastic Solder

Cu

Si

Sn-Pb or Au-Sn Solder

∆α ∆α ∆α ∆α = 14.1 ppm;
Elastic Solder

Ultrasonic Reflection Microscopy

0.6”
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2b
b/a ~ 1

2a

2b
b/a ~ 2

2b
b/a ~ 0.2

Model of progressive crack growth in DBC/baseplate
solder joint

As Soldered         1 cycle            10 cycles           100 cycles        1000 cycles

= IGBT
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Thermal Equivalent Circuit

Thermal
Resistance

Analytic Form Typical Values

θθθθJC ~ ρρρρt/As

ρρρρ -> thermal resistivity, t -> thickness
1.4oC/W

θθθθCS ~ ρρρρt/As ~ 0.1-1 oC/W

θθθθSA ~ 1/hAs
h -> heat transfer coefficient

10-33oC/W
(natural convection);
1-10oC/W (forced air)

ΘΘΘΘJC (large)

ΘΘΘΘCS (small)

ΘΘΘΘSA (large)

TJ

TC

TS

TA

device

case

environment

heat sink

ΘΘΘΘJC + ΘΘΘΘCS + ΘΘΘΘSA = ΘΘΘΘJA = (TJ – TA)/P0

TA

TJ“Heat
Current”
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Baseplate

. .

AA .

Tj

TAA = 0°C

Solder Joint Fatigue Raises Package Thermal Resistance

Baseplate

. .

AA .

Tj

TAA = 0°C

Device Substrate

Solder

Heat

Fatigue Crack

No Heat Flow
b/c Fatigue Crack

~

Pristine condition -
lowest thermal
resistance

Thermally cycled
condition - higher
thermal resistance
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Bipolar Transistor Performance Degradation with
Repeated Power Cycling (Ref: Evans and Evans)

Experimental Results Showing Large Increase in Forward
Voltage Drop, ∆∆∆∆Vbe, with Repeated Power Cycling, N

(Evans and Evans, IEEE Trans. Comp. Pack., Mfg. Tech., Part A, v. 21 no. 3 pp. 459 - 468, 1998) 

Forward Voltage, Vbe

Number of Power Cycles
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ΘΘΘΘJC

ΘΘΘΘCS

ΘΘΘΘSA

Thermal
Equivalent Circuit of
Device to Ambient

Electrical
Equivalent
Circuit

TJ

TC

TS

TA

Modeling Features:
• Nonlinear thermal circuit models

• Connect electrical to thermal circuits
through unique “thermal node” (after
A. Hefner of NIST)

• SPICE-like environment

thermal
node

Coupled Electro-Thermal Simulation
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Heatsource; 
Radius = a
Power = P

Solder joint

Substrate;
Radius = bo

Baseplate

w

Schematic of Model Package Geometry
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Calculated Thermal Resistance, Rth,  vs.
 Inverse Normalized Fatigue Crack Length, b/a.

2b
b/a ~ 0.2 2a

2b

b/a ~ 2

Note the rapid increase in Rth with penetration of the fatigue crack into the region below the device  (b/a~1)
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(Inverse Normalized Fatigue Crack Length)

Thick Substrate,

Thin Substrate,
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Dependence of Junction Temperature Increase, ∆∆∆∆Tj,
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substrate
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Stress, σ (∼ ∆α∆Τ)σ (∼ ∆α∆Τ)σ (∼ ∆α∆Τ)σ (∼ ∆α∆Τ)

w Substrate

Baseplate

Fatigue Crack

Strain Energy Release Rate, GIc, Depends on ∆∆∆∆Tj

 = GIc
( )
E
1hZ 22 υ−σ

Strain energy release rate is the driving force for fatigue crack growth
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Experimental crack growth rate data, da/dN, vs. cyclic strain
energy release rate range ∆∆∆∆G for the Al-Al2O3 and Al-Al
systems.
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10 3

10 4

10 5

10 6

10 7

10 8

10 9

10 1 0

2 4 6 8 10 12 14 16

C rack len gth (mm )

a /w = 5 ; P = 100

a/w = 1 .25; P = 100

a/w = 5 ; P = 500

a/w = 1 .25; P = 500

Relationship between the number of power cycles, N, and the
crack length, l for two different power levels and substrate
thicknesses.

Note the highly nonlinear
relationship between the crack
lengths and number of power cycles.
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Predicted Junction Temperature Increase, ∆∆∆∆Tj, vs.
Power Cycles, N

Heatsource; 
Radius = a
Power = P

Solder joint

Substrate;
Radius = bo

Baseplate
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Mechanical
Thermal stress-

strain

Package

Environment

Electronic
Device

X

X Bias
Supply

Load

Thermo-mechanical
feedback loop(s)

Electro-mechanical
modulation

Electrical
Thermal
Mechanical

Energy Form

Thermo-mechanical
modulation

Thermomechatronic Analysis of coupled flow of
electrical, thermal and mechanical energy
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Conclusions

• Advantages of new approaches must be demonstrated at the system, e.g., motor drive, level.
Device Power Density (A/cm2 or W/cm2 )
System Power Density (W/m3)
Lifetime Assurance of Entire System
System Cost Analysis Ultimately Required

•Research Needs:

1) Materials
- Controllable and High Thermal Conductivity
- Functional Integration of Electrical, Thermal, Mechanical Features
- High Temperature Capability
- Lightweight
- Compatible with Solid-State Devices
- Easily Processed

2) Efficient, System-Based Design Methodologies
- Mechanical, Thermal, Coupling
- Lifetime Prediction / Reliability
- Design Optimization / Tradeoff Capability


